3.11.62 \(\int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx\) [1062]

3.11.62.1 Optimal result
3.11.62.2 Mathematica [C] (verified)
3.11.62.3 Rubi [A] (verified)
3.11.62.4 Maple [C] (verified)
3.11.62.5 Fricas [B] (verification not implemented)
3.11.62.6 Sympy [F(-1)]
3.11.62.7 Maxima [F]
3.11.62.8 Giac [F]
3.11.62.9 Mupad [B] (verification not implemented)

3.11.62.1 Optimal result

Integrand size = 20, antiderivative size = 389 \[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\frac {2 x^{3/2}}{3 c}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b+\sqrt {b^2-4 a c}}}+\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

output
2/3*x^(3/2)/c-1/2*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^( 
1/4))*(b+(-2*a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(7/4)/(-b-(-4*a*c+b^2) 
^(1/2))^(1/4)+1/2*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^ 
(1/4))*(b+(-2*a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(7/4)/(-b-(-4*a*c+b^2 
)^(1/2))^(1/4)-1/2*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^ 
(1/4))*(b+(2*a*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(7/4)/(-b+(-4*a*c+b^2) 
^(1/2))^(1/4)+1/2*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^ 
(1/4))*(b+(2*a*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(7/4)/(-b+(-4*a*c+b^2) 
^(1/2))^(1/4)
 
3.11.62.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.10 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.21 \[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\frac {4 x^{3/2}-3 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {a \log \left (\sqrt {x}-\text {$\#$1}\right )+b \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{6 c} \]

input
Integrate[x^(9/2)/(a + b*x^2 + c*x^4),x]
 
output
(4*x^(3/2) - 3*RootSum[a + b*#1^4 + c*#1^8 & , (a*Log[Sqrt[x] - #1] + b*Lo 
g[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/(6*c)
 
3.11.62.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 364, normalized size of antiderivative = 0.94, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1435, 1703, 27, 1834, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^5}{c x^4+b x^2+a}d\sqrt {x}\)

\(\Big \downarrow \) 1703

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\int \frac {3 x \left (b x^2+a\right )}{c x^4+b x^2+a}d\sqrt {x}}{3 c}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\int \frac {x \left (b x^2+a\right )}{c x^4+b x^2+a}d\sqrt {x}}{c}\right )\)

\(\Big \downarrow \) 1834

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\frac {1}{2} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {2 x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}+\frac {1}{2} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {2 x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{c}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}+\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{c}\right )\)

\(\Big \downarrow \) 827

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )+\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{c}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )+\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{c}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {x^{3/2}}{3 c}-\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )+\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{c}\right )\)

input
Int[x^(9/2)/(a + b*x^2 + c*x^4),x]
 
output
2*(x^(3/2)/(3*c) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4) 
*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - 
 Sqrt[b^2 - 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[ 
b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4))) + 
 (b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/( 
-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c]) 
^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4) 
]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))))/c)
 

3.11.62.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1703
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[d^(2*n - 1)*(d*x)^(m - 2*n + 1)*((a + b*x^n + c*x^(2*n))^( 
p + 1)/(c*(m + 2*n*p + 1))), x] - Simp[d^(2*n)/(c*(m + 2*n*p + 1))   Int[(d 
*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x 
^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && N 
eQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n*p + 1, 0 
] && IntegerQ[p]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
3.11.62.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.16 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.17

method result size
derivativedivides \(\frac {2 x^{\frac {3}{2}}}{3 c}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} b +\textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 c}\) \(65\)
default \(\frac {2 x^{\frac {3}{2}}}{3 c}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} b +\textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 c}\) \(65\)
risch \(\frac {2 x^{\frac {3}{2}}}{3 c}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} b +\textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 c}\) \(65\)

input
int(x^(9/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
2/3*x^(3/2)/c-1/2/c*sum((_R^6*b+_R^2*a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_ 
R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.62.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7019 vs. \(2 (307) = 614\).

Time = 1.30 (sec) , antiderivative size = 7019, normalized size of antiderivative = 18.04 \[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
integrate(x^(9/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
Too large to include
 
3.11.62.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

input
integrate(x**(9/2)/(c*x**4+b*x**2+a),x)
 
output
Timed out
 
3.11.62.7 Maxima [F]

\[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\int { \frac {x^{\frac {9}{2}}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^(9/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
2/3*x^(3/2)/c - integrate((b*x^(5/2) + a*sqrt(x))/(c^2*x^4 + b*c*x^2 + a*c 
), x)
 
3.11.62.8 Giac [F]

\[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\int { \frac {x^{\frac {9}{2}}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^(9/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
integrate(x^(9/2)/(c*x^4 + b*x^2 + a), x)
 
3.11.62.9 Mupad [B] (verification not implemented)

Time = 14.54 (sec) , antiderivative size = 12789, normalized size of antiderivative = 32.88 \[ \int \frac {x^{9/2}}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
int(x^(9/2)/(a + b*x^2 + c*x^4),x)
 
output
atan(((((128*(512*a^6*b*c^6 - 16*a^3*b^7*c^3 + 160*a^4*b^5*c^4 - 512*a^5*b 
^3*c^5))/c^3 - (256*x^(1/2)*(-(b^11 + b^6*(-(4*a*c - b^2)^5)^(1/2) - 112*a 
^5*b*c^5 + 86*a^2*b^7*c^2 - 231*a^3*b^5*c^3 + 280*a^4*b^3*c^4 - a^3*c^3*(- 
(4*a*c - b^2)^5)^(1/2) - 15*a*b^9*c + 6*a^2*b^2*c^2*(-(4*a*c - b^2)^5)^(1/ 
2) - 5*a*b^4*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(256*a^4*c^11 + b^8*c^7 - 16* 
a*b^6*c^8 + 96*a^2*b^4*c^9 - 256*a^3*b^2*c^10)))^(1/4)*(512*a^6*c^8 - 16*a 
^3*b^6*c^5 + 160*a^4*b^4*c^6 - 512*a^5*b^2*c^7))/c^3)*(-(b^11 + b^6*(-(4*a 
*c - b^2)^5)^(1/2) - 112*a^5*b*c^5 + 86*a^2*b^7*c^2 - 231*a^3*b^5*c^3 + 28 
0*a^4*b^3*c^4 - a^3*c^3*(-(4*a*c - b^2)^5)^(1/2) - 15*a*b^9*c + 6*a^2*b^2* 
c^2*(-(4*a*c - b^2)^5)^(1/2) - 5*a*b^4*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(25 
6*a^4*c^11 + b^8*c^7 - 16*a*b^6*c^8 + 96*a^2*b^4*c^9 - 256*a^3*b^2*c^10))) 
^(3/4) + (256*x^(1/2)*(a^5*b^5 - 5*a^6*b^3*c + 5*a^7*b*c^2))/c^3)*(-(b^11 
+ b^6*(-(4*a*c - b^2)^5)^(1/2) - 112*a^5*b*c^5 + 86*a^2*b^7*c^2 - 231*a^3* 
b^5*c^3 + 280*a^4*b^3*c^4 - a^3*c^3*(-(4*a*c - b^2)^5)^(1/2) - 15*a*b^9*c 
+ 6*a^2*b^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 5*a*b^4*c*(-(4*a*c - b^2)^5)^(1 
/2))/(32*(256*a^4*c^11 + b^8*c^7 - 16*a*b^6*c^8 + 96*a^2*b^4*c^9 - 256*a^3 
*b^2*c^10)))^(1/4)*1i - (((128*(512*a^6*b*c^6 - 16*a^3*b^7*c^3 + 160*a^4*b 
^5*c^4 - 512*a^5*b^3*c^5))/c^3 + (256*x^(1/2)*(-(b^11 + b^6*(-(4*a*c - b^2 
)^5)^(1/2) - 112*a^5*b*c^5 + 86*a^2*b^7*c^2 - 231*a^3*b^5*c^3 + 280*a^4*b^ 
3*c^4 - a^3*c^3*(-(4*a*c - b^2)^5)^(1/2) - 15*a*b^9*c + 6*a^2*b^2*c^2*(...